Ensuring system rewrites are truly necessary

You probably know that software rewrites, while very tempting, are expensive and can be the mistake that kills a project or a company. Yet they are routinely proposed as the solution to all problems. Is there anything you can do to minimize the risk? In this post, I propose that you actively improve the old system to ensure the new system cannot make progress in a haphazard way. This forces the new system to be designed in such a way that delivers breakthrough improvements and not just incremental improvements.

January 24, 2020 · Tags: bazel, essay, featured, sre
Continue reading (about 7 minutes)

The OSXFUSE, hard links, and dladdr puzzle

Hello everyone and welcome to this new decade! It’s already 2020 and I’m only 17 days late in writing a first post. I was planning to start with an opinion article, but as its draft is taking longer than I wanted… I’ll present you the story of a recent crazy bug that has kept me busy for the last couple of days. Java crashes with Bazel and sandboxfs On a machine running macOS Catalina, install sandboxfs and build Bazel with sandboxfs enabled, like this:

January 17, 2020 · Tags: bazel, fuse, internals, programming
Continue reading (about 13 minutes)

Tree artifacts and transient files

To conclude the deep dive into Bazel’s dynamic spawn strategy, let’s look at the nightmare that tree artifacts have been with the local lock-free feature. And, yes, I’m double-posting today because I really want to finish these series before the end of the decade1! Tree artifacts are a fancy name for action outputs that are directories, not files. What’s special about them is that Bazel does not know a priori what the directory contents are: the rule behind the action just specifies that there will be a directory with files, and Bazel has to treat that as the unit of output from the action.

December 31, 2019 · Tags: bazel
Continue reading (about 4 minutes)

Lifting the local lock for dynamic execution

In the previous post, we saw how accounting for artifact download times makes the dynamic strategy live to its promise of delivering the best of local and remote build times. Or does it? If you think about it closely, that change made it so that builds that were purely local couldn’t be made worse by enabling the dynamic scheduler: the dynamic strategy would always favor the local branch of a spawn if the remote one took a long time.

December 31, 2019 · Tags: bazel
Continue reading (about 4 minutes)

Artifact downloads and dynamic execution

In the previous post of this series, we looked at how the now-legacy implementation of the dynamic strategy uses a per-spawn lock to guard accesses to the output tree. This lock is problematic for a variety of reasons and we are going to peek into one of those here. To recap, the remote strategy does the following: Send spawn execution RPC to the remote service. Wait for successful execution (which can come quickly from a cache hit).

December 30, 2019 · Tags: bazel
Continue reading (about 5 minutes)

Output conflicts and dynamic execution

When the dynamic scheduler is active, Bazel runs the same spawn (aka command line) remotely and locally at the same time via two separate strategies. These two strategies want to write to the same output files (e.g. object files, archives, or final binaries) on the local disk. In computing, two things trying to affect the same thing require some kind of coördination. You might think, however, that because we assume that both strategies are equivalent and will write the same contents to disk1, this is not problematic.

December 27, 2019 · Tags: bazel
Continue reading (about 4 minutes)

Bazel's dynamic strategy

After introducing Bazel’s dynamic execution a couple of posts ago, it’s time to dive into its actual implementation details as promised. But pardon for the interruption in the last post, as I had to take a little detour to cover a necessary topic (local resources) for today’s article. Simply put, dynamic execution is implemented as “just” one more strategy called dynamic. The dynamic strategy, however, is different from all others because it does not have a corresponding spawn runner.

December 26, 2019 · Tags: bazel
Continue reading (about 3 minutes)

How does Bazel track local resource usage?

How does Bazel avoid melting your workstation with concurrent subprocesses? Or… tries to, because I know it still does that sometimes? There are two mechanisms as play: the jobs number and the local resources tracker. Let’s dive into them. The jobs number, given by the --jobs flag, configures the number of concurrent Skyframe evaluators during the execution phase1. What a mouthful. What this essentially means is that jobs indicates the number of threads used to walk the graph looking for actions to execute—and also executing them.

December 23, 2019 · Tags: bazel
Continue reading (about 5 minutes)

Introduction to Bazel's dynamic execution

Bazel’s dynamic execution is a feature that makes your builds faster by using remote and local resources, transparently and at the same time. We launched this feature in Bazel 0.21 back in February 2019 along an introductory blog post and have been hard at work since then to improve it. The reason dynamic execution makes builds faster is two-fold: first, because we can hide hiccups in the connectivity to the remote build service; and, second, because we can take advantage of things like persistent workers, which are designed to offer super-fast edit/build/test cycles.

December 20, 2019 · Tags: bazel
Continue reading (about 3 minutes)

What are Bazel's strategies?

“Strategies? Will you talk about Bazel’s strategy for world domination 🙀?” No… not exactly that. Dynamic execution has been quite a hot topic in my work over the last few months and I am getting ready to publish a series of posts on it soon. But before I do that, I need to first review Bazel’s execution strategies because they play a big role in understanding what dynamic execution is and how it’s implemented.

December 14, 2019 · Tags: bazel
Continue reading (about 6 minutes)

Waiting for process groups, macOS edition

In the previous posts, we saw why waiting for a process group is complicated and we covered a specific, bullet-proof mechanism to accomplish this on Linux. Now is the time to investigate this same topic on macOS. Remember that the problem we are trying to solve (#10245) is the following: given a process group, wait for all of its processes to fully terminate. macOS has a bunch of fancy features that other systems do not have, but process control is not among them.

November 15, 2019 · Tags: bazel, darwin, macos, unix
Continue reading (about 8 minutes)

Waiting for process groups, Linux edition

In the previous post, we saw why waiting for a process group to terminate is important (at least in the context of Bazel), and we also saw why this is a difficult thing to do in a portable manner. So today, let’s dive into how to do this properly on a Linux system. On Linux, we have two routes: using the child subreaper feature or using PID namespaces. We’ll focus on the former because that’s what we’ll use to fix (#10245) the process wrapper1, and because they are sufficient to fully address our problem.

November 14, 2019 · Tags: bazel, linux, unix
Continue reading (about 4 minutes)

Waiting for process groups, introduction

Process groups are a feature of Unix systems to group related processes under a common identifier, known as the PGID. Using the PGID, one can look for these related process and send signals in unison to them. This is typically used by shell interpreters to manage processes. For example, let’s launch a shell command that puts two sleep invocations in the background (those with the 10- and 20-second delays) and then sleeps the direct child (with a 5-second delay)—while also putting the whole invocation in the background so that we can inspect what’s going on:

November 12, 2019 · Tags: bazel, unix
Continue reading (about 6 minutes)

Bazel's process-wrapper helper tool

As strange as it may sound, a very important job of any build tool is to orchestrate the execution of lots of other programs—and Bazel is no exception. Once Bazel has finished loading and analyzing the build graph, Bazel enters the execution phase. In this phase, the primary thing that Bazel does is walk the graph looking for actions to execute. Then, for each action, Bazel invokes its commands—things like compiler and linker invocations—as subprocesses.

November 8, 2019 · Tags: bazel, internals, unix
Continue reading (about 6 minutes)

A quick glance at macOS' sandbox-exec

macOS includes a sandboxing mechanism to closely control what processes can do on the system. Sandboxing can restrict file system accesses on a path level, control which host/port pairs can be reached over the network, limit which binaries can be executed, and much more. All applications installed via the App Store are subject to sandboxing. This sandboxing functionality is exposed via the sandbox-exec(1) command-line utility, which unfortunately has been listed as deprecated for at least the last two major versions of macOS.

November 1, 2019 · Tags: bazel, macos
Continue reading (about 3 minutes)

Optimizing tree deletions in Bazel

Bazel likes creating very deep and large trees on disk during a build. One example is the output tree, which naturally contains all the artifacts of your build. Another, more problematic example is the symlink forest trees created for every action when sandboxing is enabled. As garbage gets created, it must be deleted. It turns out, however, that deleting file system trees can be very expensive—and especially so on macOS. In fact, calls to our deleteTree algorithm routinely showed up in my profiling runs when trying to diagnose slowdowns using the dynamic scheduler.

March 22, 2019 · Tags: bazel, macos, performance
Continue reading (about 4 minutes)

Darwin's QoS service classes and performance

Since the publication of Bazel a few years ago, users have reported (and I myself have experienced) general slowdowns when Bazel is running on Macs: things like the window manager stutter and others like the web browser cannot load new pages. Similarly, after the introduction of the dynamic spawn scheduler, some users reported slower builds than pure remote or pure local builds, which made no sense. All along we guessed that these problems were caused by Bazel’s abuse of system threads, as it used to spawn 200 runnable threads during analysis and used to run 200 concurrent compiler subprocesses.

March 6, 2019 · Tags: bazel, featured, macos, performance
Continue reading (about 6 minutes)

Using setenv equals setting global variables

This is the tale of yet another Bazel bug, this time involving environment variables, global state, and gRPC. Through it, I'll argue that you should never use setenv within a program unless you are doing so to execute something else.

February 22, 2019 · Tags: bazel
Continue reading (about 4 minutes)

Encode your assumptions

The point of this post is simple and I’ll spoil it from the get go: every time you make an assumption in a piece of code, make such assumption explicit in the form of an assertion or error check. If you cannot do that (are you sure?), then write a detailed comment. In fact, I’m exceedingly convinced that the amount of assertion-like checks in a piece of code is a good indicator of the programmer’s expertise.

February 7, 2019 · Tags: bazel, production-software, readability, software
Continue reading (about 4 minutes)

Hello, sandboxfs 0.1.0

I am pleased to announce that the first release of sandboxfs, 0.1.0, is finally here! You can download the sources and prebuilt binaries from the 0.1.0 release page and you can read the installation instructions for more details. The journey to this first release has been a long one. sandboxfs was first conceived over two years ago, was first announced in August 2017, showed its first promising results in April 2018, and has been undergoing a rewrite from Go to Rust.

February 5, 2019 · Tags: bazel, featured, software
Continue reading (about 7 minutes)

Open files limit, macOS, and the JVM

Bazel’s original raison d’etre was to support Google’s monorepo. A consequence of using a monorepo is that some builds will become very large. And large builds can be very resource hungry, especially when using a tool like Bazel that tries to parallelize as many actions as possible for efficiency reasons. There are many resource types in a system, but today I’d like to focus on the number of open files at any given time (nofiles).

January 29, 2019 · Tags: bazel, jvm, macos, portability
Continue reading (about 3 minutes)

A few extra system calls... and you lose 1% build time

Blaze—the variant of Bazel used internally at Google—was originally designed to build the Google monorepo. One of the beauties of sticking to a monorepo is code reuse, but this has the unfortunate side-effect of dependency bloat. As a result, Bazel and Blaze have evolved to support ever-increasingly-bigger pieces of software. The growth of the projects built by Bazel and Blaze has had the unsurprising consequence that our engineers all now have high-end workstations with access to massive amounts of distributed resources.

April 30, 2018 · Tags: bazel, google, software
Continue reading (about 4 minutes)

Preliminary sandboxfs support in Bazel

During the summer of last year, I hosted an intern who implemented sandboxfs: a FUSE-based file system that exposes an arbitrary view of the host’s file system under the mount point. At the end of his internship, we had a functional sandboxfs implementation and some draft patches for integration in Bazel. The goal of sandboxfs in the context of Bazel is to improve the performance of builds when action sandboxing is enabled.

April 13, 2018 · Tags: bazel, google, software
Continue reading (about 2 minutes)

Stick to your project's core language in your tests

This post is a short, generalized summary of the preceeding two. I believe those two posts put readers off due to their massive length and the fact that they were seemingly tied to Bazel and Java, thus failing to communicate the larger point I wanted to make. Let’s try to distill their key points here in a language- and project-agnostic manner.

March 27, 2018 · Tags: bazel, featured, google, software
Continue reading (about 3 minutes)

A case for writing Bazel's integration tests in Java, part 2

In part 1 of this series, I made the case that you should run away from the shell when writing integration tests for your software and that you should embrace the primary language of your project to write those. Depending on the language you are using, doing this will mean significant more work upfront to lay out the foundations for your tests, but this work will pay off. You may also feel that the tests could be more verbose than if they were in shell, though that’s not necessarily the case.

March 19, 2018 · Tags: bazel, google, software
Continue reading (about 12 minutes)

A case for writing Bazel's integration tests in Java, part 1

My latest developer productivity rant thesis is that integration tests should be written in the exact same language as the thing they test. Specifically, not shell. This theory applies mostly to tests that verify infrastructure software like servers or command line tools. It is too easy to fall into the trap of using the shell because it feels like the natural choice to interact with tools. But I argue that this is a big mistake that hurts the long-term health of the project, and once trapped, it’s hard to escape.

March 16, 2018 · Tags: bazel, google, software
Continue reading (about 14 minutes)

Introducing sandboxfs

sandboxfs is a FUSE-based file system that exposes an arbitrary view of the host’s file system under the mount point, and offers access controls that differ from those of the host. You can think of sandboxfs as an advanced version of bindfs (or mount --bind or mount_null(8) depending on your system) in which you can combine and nest directories under an arbitrary layout. The primary use case for this project is to provide a better file system sandboxing technique for the Bazel build system.

August 25, 2017 · Tags: bazel, software
Continue reading (about 2 minutes)